
Systems and Internet Infrastructure Security Laboratory (SIIS) Page 1

Securing End-to-End Provenance: A
Systems and Storage Perspective

Kevin Butler, University of Oregon
Patrick McDaniel, Stephen McLaughlin, and Devin Pohly,

Pennsylvania State University
Radu Sion and Erez Zadok, Stony Brook University

Marianne Winslett, University of Illinois

HEC FSIO 2010 Workshop, Washington DC

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Provenance

• Shuttle launch relies on
thousands of systems and
millions of parts all working
together correctly: enormously
complex

• File systems for HEC are
similarly complex - originates
from many sources and
synthesized by complex and
sometimes hidden processes

• What does the data mean and
how can we interpret and
analyze it?

2

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Data Provenance

• Data provenance allows us to answer the following
questions about the origin of data:

! Who or what contributed to the generation of this data?

! What is the data based upon?

! When was the data generated?

! Why was it generated?

! How was it generated?

• A history of the object from origin through
subsequent modifications is evidenced by a
provenance chain (DAG)

3

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

End to End Provenance System

• Why another provenance collection system?

! Strong security guarantees

! Distributed provenance collection

! EEPS will achieve the above two goals efficiently in high
end computing systems

4

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Secure Provenance Collection

• Provenance monitor (PM) analogous to reference
monitor concept

• Three guarantees

! Complete mediation

! Tamperproofness

! Verifiability

• Beyond authentication of records

! Integrity/Trustworthiness of recording instrument and
provenance-enhanced applications

5

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Project Initiatives

6

Provenance monitor
system and application

development
(McDaniel)

Instrumentation
for measuring

performance and
energy (Zadok)

Provenance chain
constructions and query

management (Sion, Winslett)

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Provenance Monitor

• Implementing LSM-based
provenance monitor

! LSM for complete mediation,
tamperproofing

• Tracking provenance of
entire VM runs

! Created graph of entire process
ancestry

! Investigated visualizations which
included file reads/writes

• Exploring potential for
secure multi-host and
interdomain provenance

7

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Autonomously Secure Disks

• Enforce security perimeter at external I/O interface

! How? Store all security metadata including provenance
information within the drive itself

8

drive enclosure

non-volatile memory

disk

platters

policy

engine

crypto

processor

firmware

bus

I/O

SATA/

SCSI/

ATA

interface

RAM policy

cache

“New Security Architectures Based on Emerging Disk
Functionality”, IEEE Security and Privacy, Sept/Oct 2010

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Host Validation

• Portable storage holds more and is more ubiquitous
than every before (256 GB flash drives)

! Public/private data on devices, want to share some info
but protect other data

• How can we solve these issues?

! Only allow registered devices on system

! Virus scanning on flash drive

! General problem: How do we know if the system we share
data with is in a good (valid) state? Can we collect a
provenance record relating to this data?

9

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Kells

• USB storage device performs attestations with host
in order to determine its integrity state

• Periodically repeat attestation to get continuous
guarantee of host integrity

• Allow access to trusted partition only if system is in a
good state

10

USB drive plugged in
Host request for

trusted partition?

Host verification

process

Mount public partition

Mount trusted

partition (if needed)

Yes

No

Pass

Fail

Revalidation Timeout

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Continuous Attestation

• Support framework for runtime monitoring on system

! Patagonix, Pioneer, BIND, LKIM, etc.

• Continuous attestation gives assurance that the system
is in a good state

! Length of time between attestations can be parameterized by

an attestation period "t

! Acts as security heartbeat

• Quarantine buffer on storage device
holds writes until system state
is attested

11

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Kells Security Properties

12

• SEC: “Any read request
completed by Kells was made
while the host was in a good
state.”

! attestation received within "t
of the request and the system
was not rebooted

KRead: 1. att = read D.RAM.att-loc
2. (t, req) = receive
3. n’ = sread req,att
4. send n’

Figure 6: The encoding of the Kells read operation

KWrite: 1. (t, req-pair) = receive
2. enqueue (t, req-pair)

KCommit: 1. att = read D.RAM.att-loc
2. (t, req) = peek
3. swrite req,att
4. dequeue

Figure 7: The encoding of the Kells write operation

(SEC) ! ∀ (treq, (l, n)), (tatt, sig), t s.t.
(treq, (l, n)) = Recv(D) @ t

∧ (tatt, sig) = Recv(D)
∧ e = SRead(D, (t, treq, (l, n)), (tatt, sig))
⊃ GoodState(H, (t, treq, (l, n)), (tatt, sig))

(INT) ! ∀ (t, treq, (l, n)), (tatt, sig) s.t.
(t, treq, (l, n)) = Peek(D)

∧ (tatt, sig) = Recv(D)
∧ SWrite(D, (t, treq, (l, n)), (tatt, sig))
⊃ GoodState(H, (t, treq, (l, n)), (tatt, sig))

Figure 8: The formal definition of the two Kells security properties.

To alleviate the need for loops, we make one assumption about the underlying hardware of the Kells device,
namely, that it has a hardware timer that can repeatedly call the program that performs commits from the
write request queue (KCommit in Figure 7).

We extend the language with three instructions for working with the Kells write request queue: enqueue,
dequeue and peek. The first two operations are straightforward and are assumed to be synchronized with
any other executing threads. The peek operation is needed to prevent a dequeued request from being lost
by KCommit in the event that a fresh attestation has not arrived after the request has been dequeued. This
is needed as existing statements prevent us from simply enqueueing the request again while waiting for a
fresh attestation. If the queue is empty, peek halts the current thread.

To capture Kells mediation, we add the checks for attestation freshness and verification into the seman-
tics of the read and write actions by introducing the sread and swrite actions. The semantics of
these two actions are shown in Figure 5. Both of these operations take a block I/O request and an attestation
as arguments. A block request (t, treq, (l, n)) from the host consists of the program counter at arrival time
t, an absolute arrival time treq and a sector offset and data pair.

The encoded version of the Kells read program (KRead) is shown in Figure 6. We assume the existence
of a running thread that is responsible for requesting new attestations from the host at a rate of ∆t and
placing the most recent attestation atD.RAM.att-loc. Lines 1. and 2. receive the attestation and request
from the host respectively. Line 3. invokes the secure read operation which runs to completion returning
either the desired disk blocks (sread) or an error (sreadD). Line 4. sends the resulting value to the host.

The encoded version of the Kells write program (KWrite) is shown in Figure 7. KWrite simply
receives the request from the host in line 1. and places it in the request queue at line 2. t contains the value
of ρ at the time the request was received. The majority of the write operation is encoded in KCommit,
which retrieves an enqueued request, arrival time and the most recent attestation, and performs an swrite.
Recall that KCommit runs once in a thread invoked by a timer since a timed loop is not possible in LS2.

6.2.2 Proof of Security Properties

The (SEC) and (INT) properties may be stated formally as shown in figure 8. Both properties ultimately
make an assertion about the state of a host at the time it is performing I/O using the Kells device. GoodState

16

• INT: “Any write request
completed by Kells was made
while the host was in a good
state.”

! same dependency on

attestation received within "t
as with SEC

KRead: 1. att = read D.RAM.att-loc
2. (t, req) = receive
3. n’ = sread req,att
4. send n’

Figure 6: The encoding of the Kells read operation

KWrite: 1. (t, req-pair) = receive
2. enqueue (t, req-pair)

KCommit: 1. att = read D.RAM.att-loc
2. (t, req) = peek
3. swrite req,att
4. dequeue

Figure 7: The encoding of the Kells write operation

(SEC) ! ∀ (treq, (l, n)), (tatt, sig), t s.t.
(treq, (l, n)) = Recv(D) @ t

∧ (tatt, sig) = Recv(D)
∧ e = SRead(D, (t, treq, (l, n)), (tatt, sig))
⊃ GoodState(H, (t, treq, (l, n)), (tatt, sig))

(INT) ! ∀ (t, treq, (l, n)), (tatt, sig) s.t.
(t, treq, (l, n)) = Peek(D)

∧ (tatt, sig) = Recv(D)
∧ SWrite(D, (t, treq, (l, n)), (tatt, sig))
⊃ GoodState(H, (t, treq, (l, n)), (tatt, sig))

Figure 8: The formal definition of the two Kells security properties.

To alleviate the need for loops, we make one assumption about the underlying hardware of the Kells device,
namely, that it has a hardware timer that can repeatedly call the program that performs commits from the
write request queue (KCommit in Figure 7).

We extend the language with three instructions for working with the Kells write request queue: enqueue,
dequeue and peek. The first two operations are straightforward and are assumed to be synchronized with
any other executing threads. The peek operation is needed to prevent a dequeued request from being lost
by KCommit in the event that a fresh attestation has not arrived after the request has been dequeued. This
is needed as existing statements prevent us from simply enqueueing the request again while waiting for a
fresh attestation. If the queue is empty, peek halts the current thread.

To capture Kells mediation, we add the checks for attestation freshness and verification into the seman-
tics of the read and write actions by introducing the sread and swrite actions. The semantics of
these two actions are shown in Figure 5. Both of these operations take a block I/O request and an attestation
as arguments. A block request (t, treq, (l, n)) from the host consists of the program counter at arrival time
t, an absolute arrival time treq and a sector offset and data pair.

The encoded version of the Kells read program (KRead) is shown in Figure 6. We assume the existence
of a running thread that is responsible for requesting new attestations from the host at a rate of ∆t and
placing the most recent attestation atD.RAM.att-loc. Lines 1. and 2. receive the attestation and request
from the host respectively. Line 3. invokes the secure read operation which runs to completion returning
either the desired disk blocks (sread) or an error (sreadD). Line 4. sends the resulting value to the host.

The encoded version of the Kells write program (KWrite) is shown in Figure 7. KWrite simply
receives the request from the host in line 1. and places it in the request queue at line 2. t contains the value
of ρ at the time the request was received. The majority of the write operation is encoded in KCommit,
which retrieves an enqueued request, arrival time and the most recent attestation, and performs an swrite.
Recall that KCommit runs once in a thread invoked by a timer since a timed loop is not possible in LS2.

6.2.2 Proof of Security Properties

The (SEC) and (INT) properties may be stated formally as shown in figure 8. Both properties ultimately
make an assertion about the state of a host at the time it is performing I/O using the Kells device. GoodState

16

Bottom Line: Provides formal proof that data is protected.

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Future Project Goals
• Revealing file access patterns

! What is “least privilege?”

! Forensic details of file and block access: “Which host
accessed this particular data and where may that
information have been disseminated?”

• Information flow systems

! Provenance as enriched information flows

• Provenance calculus

! Formalism for expressing and querying provenance data

! Working toward more rigorous definitions of provenance

! Potential for machine learning applications
13

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Performance Enhancements

• Provenance monitor profiling

! Enhanced profiling tools

! Profiling provenance collection for workloads from
scientific domains

! EEPS calibration for a particular environment

! LSM instrumentation

• Cost models for provenance collection

! Hardware and storage requirements ($/GB)

! New cost models based on types of provenance data
collected and system architectures

14

Computer and Information Science

Securing End-to-
End Provenance

Kevin Butler <butler@cs.uoregon.edu>

mailto:butler@cs.uoregon.edu
mailto:butler@cs.uoregon.edu

Systems Problems

! Reliable high-volume data transmission from
kernel to userspace

! Currently using Linux relay mechanism

! Investigating other means to increase reliability

! Inclusion of filenames in inode tracking

! LSM provides little context here

! Would provide additional information during analysis

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Distributed PM

• Challenges in distributed provenance

• Domain specific policies for:

! Auditors - confidentiality considerations

• Cryptographic commitments [Hasan’09]

! Divergent modification histories

• Plausible version history

• If necessary, plausible history may be checked against previous
subjects in the ownership chain

18

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Distributed Environments

19

PM Host

Host

PM

kernel

HostPM

Provenance

Authority

Provenance

Authority

PM

PM

PM

Provenance

Authority

PM

PM

PM

secure

coprocessor

intelligent

storage

Org A

Org B

Org C

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Distributed Example

20

Example: File transfer between hosts with untrusted OSes
and trusted storage

Doc

Disk

Hybrid Drive

Host A

Flash

Kernel

!" #

FS

Disk

Hybrid Drive

Host B

Flash

Kernel

!!$ %

FS

PM

SaF SaF

PM

P1

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Distributed Example

21

A program initiates a request for the file.

Doc

Disk

Hybrid Drive

Host A

Flash

Kernel

scp

FS

Disk

Hybrid Drive

Host B

Flash

Kernel

sshd

FS

PM

SaF SaF

PM

P1

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Distributed Example

22

A secure tunnel is established between disks through the
untrusted OS.

Doc

Disk

Hybrid Drive

Host A

Flash

Kernel

scp

FS

Disk

Hybrid Drive

Host B

Flash

Kernel

sshd

FS

PM

SaF SaF

PM

P1

P1

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Distributed Example

23

The document is transferred as normal.

Doc

Disk

Hybrid Drive

Host A

Flash

Kernel

scp

FS

Doc

Disk

Hybrid Drive

Host B

Flash

Kernel

sshd

FS

PM

SaF SaF

PM

Doc

P1

P1

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Distributed Example

24

The destination disk checks the integrity once the write-
through is completed and appends a new provenance entry.

Doc

Disk

Hybrid Drive

Host A

Flash

Kernel

scp

FS

Doc

Disk

Hybrid Drive

Host B

Flash

Kernel

sshd

FS

PM

SaF SaF

PM

Doc

P1

P1

P1|P2

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Distributed Provenance Overheads

• Overhead increases monotonically as data is shared.

• Two implications:

! Storage costs within a single domain

• High sharing factor: redundant provenance data

• Long per-host modification histories: higher redundancy factor

• Even though document size may remain constant!

! Audit costs between domains

• As sharing of a document increases, the computational cost of
sharing increases

25

